Conversão de unidades - Resumo Nível Médio

É essencial dominarmos conversões entre diferentes unidades de uma mesma grandeza. Escrevo este resumo, uma continuação do Unidades físicas e prefixos, para destacar duas maneiras para converter unidades.

Substituição

Podemos converter unidades substituindo a unidade antiga pelo valor equivalente da nova. Este valor equivalente multiplicará o número como um todo. As situações contidas no Exemplo 1 esclarecem o que quero dizer.

Exemplo 1

2 min = 2 · 60 s = 120 s

0,1 min = 0,1 · 60 s = 6 s

1 h = 1 · 60 min = 60 min

No exemplo acima, como sabemos que um minuto é igual a 60 segundos e uma hora é igual a 60 minutos, substituímos esses valores no ato da conversão. Podemos ir mais longe e converter, por exemplo, horas em segundos.

Exemplo 2

1 h = 1 · 60 min = 60 min = 60 · 60 s = 3600 s

3 h = 3 · 60 min = 180 min = 180 · 60 s = 10800 s

O inverso também pode ser obtido se atentarmos ao fato de que, se 1 minuto corresponde a 60 segundos, 1 segundo corresponde a 1/60 minuto.

Exemplo 3

240 s = 240 · (1/60) min = 240/60 min = 4 min

30 s = 30 · (1/60) min = 30/60 min = 0,5 min

Os exemplos anteriores estavam focados em conversões temporais. O Exemplo 4 mostra uma série de outras situações onde este tipo de conversão pode ser aplicado.

Exemplo 4

100 mL = 100 · 10-3 L = 0,1 L

10 Gb = 10 · 109 b = 1010 b

2 cm = 2 · 10-2 m = 0,02 m

2 cm2 = 2 · (10-2)2 m2 = 2 · 10-4 m2

1 km/h = 1 · 1000 m/h = 1000 m/h

1 km/h = (1 km)/(60 min) = 1/60 km/min

Exemplo 5

Vamos converter v = 100 km/h para m/s. Como sabemos que um quilômetro corresponde a 1000 metros e que uma hora corresponde a 60 minutos, temos:

$$ v = 100 \ \frac{\text{km}}{\text{h}} = 100 \ \frac{1000}{60} \frac{\text{m}}{\text{min}} \text{ .}$$

Ainda, sabemos que um minuto equivale a 60 segundos:

$$ v = 100 \ \frac{1000}{60 \cdot 60} \frac{\text{m}}{\text{s}} = 100 \ \frac{1000}{3600} \frac{\text{m}}{\text{s}} \text{ ,}$$

ou seja,

$$v = 100 \ \frac{1000}{3600} \frac{\text{m}}{\text{s}} = 100 \cdot 3,6 \ \frac{\text{m}}{\text{s}} \text{ .}$$

O resultado acima mostra que, para realizar a conversão de km/h para m/s, basta multiplicar por 3,6. Por fim,

$$ v = 360 \ \frac{\text{m}}{\text{s}} \text{ .} $$

Então, v = 100 km/h = 360 m/s.

Regra de três

Quando as coisas começam a ficar confusas, podemos recorrer à famosa regra de três, como nos exemplos que seguem.

Exemplo 6

Vamos converter 3000 µm para metro.

A pergunta é: se 1 µm é equivalente a 10-6 m, 3000 µm equivale a quantos metros?

\begin{matrix} \uparrow \text{µm} & \uparrow \text{m} \\ 1 & 10^{-6} \\ 3000 & x(?) \\ \end{matrix}

Multiplicando em cruz, temos:

$$ 1 \cdot x = 3000 \cdot 10^{-6} $$ $$ x = 3 \cdot 10^{-3} \text{ m.} $$

Portanto, 3000 µm é igual a 0,003 m.

Exemplo 7

Vamos converter 2000 cm3 para m3.

A pergunta é: se 1 cm3 é equivalente a (10-2 m)3, 2000 cm3 equivale a quantos m3?

\begin{matrix} \uparrow \text{cm}^3 & \uparrow \text{m}^3 \\ 1 & (10^{-2})^3 \\ 2000 & x(?) \\ \end{matrix}

Multiplicando em cruz, temos:

$$ 1 \cdot x = 2000 \cdot 10^{-6} $$ $$ x = 2000 \cdot 10^{-6} \text{ m}^3 \text{.} $$

E assim concluímos que 2000 cm3 é igual a 0,002 m3.

Palavra final

Gostaria de concluir que, não importa o método de conversão, o importante é sempre chegar ao resultado correto. Por isso, faça do jeito que for melhor para você. シ



Postar um comentário